Like many other industries, health care has become much more agile as practitioners have tried to keep expenses under control. Smaller, more portable devices now enable more efficient and economical diagnostic and treatment procedures to be delivered at the patient’s bedside. Computers-On-Modules (COMs) are helping provide the portability, computing power, and integration needed to increase the longevity of medical device designs.
Electronic device manufacturers are increasingly using Computers-On-Modules (COMs) to produce compact, portable, and easily modified solutions for health care. In addition to smaller solutions, COMs enable longer product life, which is particularly desirable in medical equipment. One reason for this is the stringent and expensive certification process medical devices go through as mandated by the FDA. Furthermore, successful products often become industry standards that medical technicians must learn and adhere to.By definition, COM designs are modular. The COM approach for embedded technology enables a medical solution’s processing power to be easily updated or upgraded while the physical dimensions and mounting system remain exactly the same. This allows the appearance of the industrial design to stay consistent with market expectations while providing for any needed upgrades. If a particular processor is reaching End-Of-Life (EOL), a module with a current processor can be introduced.
With COMs, the processor and supporting features are placed on a compact module that comprises a complete computer. The I/O for the system and the unique features that differentiate the customer’s product are included on a separate baseboard. Processor upgrades can be made by utilizing different processing modules that mate with the baseboard. This enables easy processor upgrades, plus various modules can be offered spanning a range of performance levels.
refer:
http://embedded-computing.com/articles/com-device-life-expectancy/
沒有留言:
張貼留言